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This paper describes a new application of the self-correcting
procedure to computational liquid metal magretohydrodynamics. In
this procedure, the conservation law of the electric current density
incorporated in a Poisson equation for the scalar potential plays an
imporntant role of correcting this potential. This role is similar 1o that of
the conservation law of mass in a Poisson equation far the pressure.
Some numerical results show that the proposed self-correcting proce-
dure can provide a more accurate numerical solution of the electric
current density than the existing solution procedure. € 1994 Acaderic
Press, inc.

1. INTRODUCTION

A solution procedure including a Poisson equation for
the pressure is the most popular one in a computation of
incompressible fluid flow. This procedure was originated by
Harlow and Welch [1] and is called the marker-and-cell
(MAC) method {27. Also its variations have been widely
used not only in the finite difference method [3-5] but also
in the finite element method [6, 7). The principle of this
solution procedure was discussed by Hirt and Harlow [8],
and they described it as “the self~correcting procedure.”

Now let us see the outline of the self-correcting procedure
according to Hirt and Harlow’s idea in a computation
of incompressible fluid flow [8]. The semi-discretized
conservation equations are

un+1:un+%{ﬁvpn+l+fn} (11)

V.ou't!=0, (12)

where v is the fluid velogity, p is the pressure, p is the fluid
density, f denotes all the other terms such as the convection
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and the diffusion terms, and the superscript #'s mean the
time steps. Taking the divergence on both sides of Eq. {1.1)
and using Eq. (1.2}, we obtain a Poisson equation for the
pressure

V2pn+l:V.fn+%V‘un- (1-3)

The final term in the right-hand side of Eq. (1.3}, if it is not
zero, corrects the pressure field so that the velocity field at
the next time step should satisfy Eq. (1.2). The point of the
self-correcting procedure lies in keeping the final term,
although it could be eliminated in principle. This is the
overview of the self-correcting procedure in computational
fluid dynamics.

Now let us compare the above equations with Ohm’s law

I =g (—Vg" ! +u"x B") (1.4)

and the conservation iaw of the electric current density

V-I"t =0 (1.5)
and a Poisson equation for the scalar potential derived from
Eqgs. (1.4) and (1.5)
Vit =V.(u"xB") {1.6)
which 1s solved in the existing solution procedure {9, 10].
We are easily aware that the relation between the scalar
potential and the electric current density in Eq. (1.4) is
analogous to that between the pressure and the fluid
velocity in Eq. (1.1). In addition, Egs. (1.2} and (1.5) have
the same form, and both Egs. (1.3) and (1.6} are Poisson
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equations. Therefore the self-correcting procedure would be
available also for Eqgs. (1.4) to (1.6). But we cannot find a
term in Eq. (1.6) that should correspond to the final term in
the right-hand side of Eq.(1.3). Eventually the eiectric
current density calculated from Eq. (1.4) could not always
satisfy Eq. (1.5) as long as the scalar potential is obtained
from Eq.(1.6). This motivated us to apply the self-
correcting procedure to magnetohydrodynamic flow.

In the following sections, a new application of the self-
correcting procedure to magnetohydrodynamic flow will be
described, and then some numericai results obtained by
solving an example problem will be shown.

2. DESCRIPTION OF THE PROCEDURE

As already mentioned, there exists an analogy between
Eqgs. (1.1) and (1.4). However, there also exists a conspicous
difference: Eq. (1.1) contains a time derivative, while
Eq. (1.4) does not. Therefore a certain substitute for a time
derivative'should be introduced in Eq. (1.4} so that the seif-
correcting procedure becomes applicable. In the present
application, an underrelaxation is introduced in Ohm’s law
as

i =o( =V ' + 0" x B")
Jk+1:Jk+w‘,(Jf+1_ch)

{2.1)
i2.2)
where o, is the underrelaxation factor (0 <w,<1), the
superscript &'s denote the iteration steps, and the subscript
t means “tentative.” Eliminating J**' from Egs. (2.1) and

(2.2), we obtain
Jk +1 Jk

o,

=M +a( =V +u"xB").  (2.3)

It is assumed here that the conservation law of the electric
current density is satisfied at the next iteration step k + 1:
V-Jétl =0, 2.4)

Taking the divergence on both sides of Eq. (2.3), we obtain
a Poisson equation for the scalar potential,

Vzgﬁ“‘:V-(u"xB")——i—(l fi—)V-J", (2.5)
J

where the final term in the right-hand side is “the self-
correcting term.” If it is not zero, the scalar potential is
corrected so that the electric current density at the next
iteration step, J**!, should satisfy its conservation law,
" Eq. (2.4). An iterative process of solving Eq. (2.5) for ¢**'
and calculating J**' from Egs. {2.1) 2nd (2.2) is continued
until JJ¥+ ! — J*| becomes sufficiently small.
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FIG. 1. Schematic drawing of example problem.

The key point in the above procedure lies in applying an
iterative computation to Ohm’s law and a Poisson equation
of the scalar potential. This corresponds to the pressure
correction process with the time step advance in the original
self-correcting procedure.

3. EXAMPLE PROBLEM

The proposed self-correcting procedure is applied to an
example problem. Figure I shows a schematic drawing of
this problem. In this problem, a fluid velocity distribution in
a square duct is solved under a transverse magnetic field,
B=(0, B,,0), with the following conditions and assump-
tions: the working fluid is sodium; the flow is laminar,
one-dimensional, and fully developed; the applied magnetic
fieid is uniform and the induced magnetic field is neglected.

Under these conditions, the equation of motion is
described as

At d,
u”“zu”%——p—(ﬁ—a'*‘fv‘“’gHB»‘)'

= (3.1)

where u is the x-component of the fluid velocity u,

TABLE 1

Analysis Conditions

Reynolds number ~ 107 (dpfdx = —0.18 kg/m?s?}
Hartmann number 102

Size of the duct 0.03 m x 0.03 m {inner side}
Computational grid 72 x 72 cells

(refined in near-wall region)

0. x (half width of the duct)
0dls

0.1 A/m? for current density

1.0 x 107 mys for fluid velocity
1.0 10~* m/s for fluid velocity

Wall thickness
Time step width
Convergence criteria

Initial conditions
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The finite difference method is used to solve this example
problem, and the computational grid is staggered one,
where the vector quantities are located on cell sides and the
scalar quantities are located in cell centers.

The outline of the solution procedure is as follows:

(1) Solve Eq. (2.5) for ¢*+ .

(2) Calculate J“*! from Egs. (2.1) and (2.2).

Jk+1

{3) Repeat the above steps until | — J*| becomes

sufficiently small.
(4} Caleulate y"*! explicitly from Eq. (3.1).

(5) Repeat all the above steps untll a steady-state
velocity field is obtained.

Two cases are treated here for electric property of the
duct wall, one is an insulated wall, the other is a conducting
wall. The detailed conditions are listed in Table L.

4. NUMERICAL RESULTS

First, some numerical results for the insulated wall are
shown. Figures 2a to d show the converged solutions of
eleciric corrent density distributions obtained for several
values of w,;. When w; = 1.0, the self-correcting term is not
included in Eq. (2.5) This reflects the numerical result
shown in Fig. 2a, where the conservation law of the electric
current density is not satisfied well. In fact, the electric
currents are turning at the corners of the duct, but we
cannot find a return current n the vicinity of the upper and
bottom walls in the figure. On the contrary, in Figs. 2b to d,
the situations for V - J seem to be made better by the effect
of the self-correcting term.

Figure 3 shows the trend of the average value of V- J per
computational cell. This figure indicates an important fact
that the smaller w, becomes, the better the conservation law
of the electric current density is satisfied.

Figure 4 shows the profiles of the scalar potential along
the horizontal center line of the duct. The results in this
figure support the results in Figs. 2 and 3: in the case of
@, =10, the profile of the scalar potential almost flattens,
while the gradient becomes so large as to lead the return
current as w, decreases.

In Figs. 5a to d, the bird’s-eye views of the fluid velocity
profiles for each @, are shown. These figures exhibit how the
underrelaxation factor influences the velocity profile. As this
factor becomes smaller, the return current and the width of
the current path are increased as shown in Figs. 2a to d.
Thus the acceleration force in the Hartmann layer increases,
whereas Fig. 2 suggests that the stopping force in the core
region slightly becomes less as w, decreases. This is the
reason why so much difference is observed in Figs. 5a to d.

Next, let us move to the case of the conducting wall. This
case is taken up in order to demonstrate that the self-correct-
ing procedure is effective also for a solid body. A relevant
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discussion will be given later. Here the electric conductivity
of the wall is the same as that of fluid. Figures 6a to d show
the distributions of the electric current density. In Fig. 6a, it
1s observed that the conservation law of the electric current
density is not satisfied in the upper and the bottom walls.
On the contrary, this conservation law seems to be satisfied
well in Figs. 6b to d. Figure 7 shows the trend of the average
value of the V - J per computational cell. All of these results
are similar to those in Figs. 2a to d and Fig. 3.

Figure 8 shows the profiles of the scalar potential along
the horizontal center line. The results are similar to those
in Fig 4, except that the profiles in the case of w,=0.1
and w,=0.0! are almost overlapped. This overlapping,
however, is not so serious and just corresponds to the nearly
equal distributions of the electric current density shown in
Figs. 6b and c.

Figure 9 shows the bird’s-eye views of the fluid velocity
profiles for each w,. Similar to Figs. 5a to d, it is confirmed
that the velocity profiles are much influenced by the
underrelaxation factor also in case of conducting wall.

5. DISCUSSION

The above numericai results demonstrate the effect of the
seli-correcting procedure in computational magnetohydro-
dynamics. It is crucial to discuss the relation between the
sell-correcting procedure and the source term in the Poisson
equation of the scalar potential, i.e., V-{(ux B). In general,
both the fluid velocity and the magnetic field are time-
dependent variables. This fact leads to a possibility that the
source term converges with significant error when the
conservation law of the clectric current density is not
satisfied and the resultant electromagnetic force is not
accurate. Then a solution of the scalar potential obtained
with such a source term also contains significant error. In
this sense, it can be said that the variability of the source
term needs some measure to correct the scalar potential, ie.,
the self-correcting procedure.

In a computation of the electric current density in a solid
body, a Lapiace equation of the scalar potential is solved,

Vi =0, (5.1}
We deduce from the above discussion that the self
correcting procedure would not be necessary in this case.
And we know that such a procedure is not necessary to
soive this type of equation, e, a heat conduction equation
without a source term. But we should recognize from
Figs. 6a to d that when the generation term in the fluid
region governs the scalar potential field and the electric
current goes into a solid wail, the self-correcting procedure
is quite necessary so that the electric current density should
satisfy its conservation law.
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As already mentioned, the remarkable feature of the
proposed procedure lies in applying an iterative computa-
tion to Ohm's law and a Poisson equation of the scalar
potential. One may suppose, however, that the following
equation should be solved, instead of Eq. (2.5},

V2¢"+1=V-(H"XB")+§V’J” (5.2)

which is derived intuitively from Ohm’s law and the electric
current density should be caiculated from Eq. (1.4). In this
idea, an iterative computation is not included. In addition,
it would be expected that the scalar potential is corrected by
the final term in the right-hand side of Eq. {5.2). So this idea
scems better than the proposed one. But unfortunately this
idea often leads to a numerical solution without convergence.
This situation is illustrated in Fig. 10, where the maximum
change of the electric current density non-dimensionalized
by the average current is plotted along time steps. The result
obtained by the above idea shows that the maximum
change decreases at early time steps, but begins to increase
after that. On the other hand, the result obtained by
the proposed procedure decreases graduvally with small
oscillation. The failure of the above idea is attributed
to the following fact: Eq. (5.2) is equivalent to Eq. (2.5) with
w,;=0.5, while the value of w; implicitly included in
Eq. (1.4)is unity. Therefore thisidea contains an inconsistent
relaxation of the electric current density.

It would be important to discuss here about a value of the
underrelaxation factor and its influence on a numerical
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solution. The results shown in Figs, 3 and 7 indicate that the
conservation law of the ¢lectric current density is satisfied
better as w; becomes smaller. It should be noted, however,
that this tendency does not always mean that an overall
accuracy of the numerical solution is improved as o,
becomes smaller. In other words, when w, 1s oo smail, there
exists a possibility that some trifling value {in the lower
places) of V-J, which should be regarded as a numerical
error, is amplified by the reciprocal of w,. {(See Eq. (2.5).)
Then the self-correcting term behaves, bevond its original
role, as a source term of the scalar potential. In this
situation, a numerical solution of the electric current density
may satisfy its conservation law well, but it has no basis in
phystcal reality.

Therefore, in order to obtain a numerical solution with
physical reality, we have to seek a suitable value of @,. Here
it must be remembered that an electric conductivity and a
computational mesh size are included in the self-correcting
term. So, strictly speaking, a suitable couple of w,, ¢, and a
mesh size should be sought for. Thus a further study, which
probably accompanies a great deal of work, will be needed
in near future.

6. CONCLUDING REMARKS

In this paper, a new application of the self-correcting
procedure to liguid metal magnetohydrodynamics was
proposed. And it was demonstrated that this procedure is
valid to satisfy the conservation law of the electric current
density.

400. 500.

time step

FIG.

10. Maximum change of electric current density non-dimensionalized by average current (insulated wail).
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A remarkable feature of the present self-correcting proce-
dure is to apply an iterative computation to Ohm’s law and
a Poissen equation of the scalar potential with an under-
relaxation factor. Some numerical results obtained here
show that as the underrelaxation factor becomes smaill, the
conservation law of the electric current density is satisfied
better. We have to note, however, that a suitable couple of
the underrelaxation factor, an electric conductivity, and a
computational mesh size is necessary to obtain a numerical
solution with physical reality.

Needless to say, to maintain a physical reality of
the numerical solution is an essential requirement in
computational magnetohydrodynamics. In this sense, the
self-correcting procedure may be no more than a necessary
condition, but it is a fundamental numerical technique to
satisfy the conservation law of the electric current density.
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